M1.(a) Both alleles are expressed / shown (in the phenotype).
Accept: both alleles contribute (to the phenotype)
Neutral: both alleles are dominant
(b) Only possess one allele / Y chromosome does not carry allele / gene / can't be heterozygous.

Accept: only possess one gene (for condition)
Neutral: only 1 X chromosome (unqualified)
(c) 1. $\quad X^{6} X^{B}, \quad X^{B} X^{B}, \quad X^{G} Y, \quad X^{B} Y$;

Accept: equivalent genotypes where the Y chromosome is shown as a dash e.g. X^{G}-, or is omitted e.g. X^{G}
Reject: GB, BB, GY, BY as this contravenes the rubric
2. Tortoiseshell female, black female, ginger male, black male;
3. (Ratio) 1:1:1:1

2 and 3. Award one mark for following phenotypes tortoiseshell, black, (black) ginger in any order with ratio of 1:2:1 in any order.
Allow one mark for answers in which mark points 1, 2 and 3 are not awarded but show parents with correct genotypes i.e. $X^{G} X^{B}$ and $X^{B} Y$ or gametes as X^{G}, X^{B} and X^{B}, Y
3. Neutral: percentages and fractions
3. Accept: equivalent ratios e.g. for 1:1:1:1 allow $0.25: 0.25$: 0.25 : 0.25
(d) (i) Correct answer of $0.9=2$ marks;

Incorrect answer but shows $q^{2}=0.81$ = one mark.
Note: 0.9% = one mark
(ii) Homozygous dominant increases and homozygous recessive decreases.

M2.(a) $\quad 0.32$.

> Correct answer = 2 marks
> Accept 32% for 1 mark max
> Incorrect answer but identifying 2pq as heterozygous = 1 mark
(b) 1. Mutation produced $K D R$ minus / resistance allele;
2. DDT use provides selection pressure;
3. Mosquitoes with KDR minus allele more likely (to survive) to reproduce;
4. Leading to increase in KDR minus allele in population.
(c) 1. Neurones remain depolarised;
2. So no action potentials / no impulse transmission.
(d) 1. (Mutation) changes shape of sodium ion channel (protein) / of receptor (protein);
2. DDT no longer complementary / no longer able to bind.

M3.(a) (Recessive) allele is always expressed in females / females have one (recessive) allele / males need two recessive alleles / males need to be homozygous recessive / males could have dominant and recessive alleles / be heterozygous / carriers;

Accept: Y chromosome does not carry a dominant allele. Other answers must be in context of allele not chromosome or gene.
(b) (i) 1. 1, (2) and 5;

Accept: for 1 mark that 1 and 2 have slow (feather production) but produce one offspring with rapid (feather production).
Neutral: any reference to 3 being offspring of 1 .
2. 1 must possess / pass on the recessive allele / 1 must be a carrier / heterozygous / if slow (feather production) is recessive all offspring of (1 and 2) would be slow (feather production) / if rapid (feather production) was dominant 1 would have rapid (feather production);
Reject: both parents must be carriers / possess the recessive allele.
Reject: one of the parents (i.e. not specified) must be a carrier / heterozygous.
(ii) $\quad 5=X^{\prime} Y / X^{\prime} Y^{-} / f / f-/ f Y$;
$7=X^{F} X^{f}$ and $X^{F} X^{F}$ (either way round) /
or $X^{\prime} X^{F}$ and $X^{F} X^{F}$ (either way round) /
or $\mathrm{X}^{\mathrm{F}} \mathrm{X}^{\mathrm{f}}, \mathrm{X}^{\prime} \mathrm{X}^{\mathrm{F}}$ and $\mathrm{X}^{\mathrm{F}} \mathrm{X}^{\mathrm{F}}$ (in any order);
Note: allow $5=X^{\prime} Y, X^{\prime} Y$.
Accept: for both 5 and 7 a different letter than F. However, lower case and capital letter must correspond to that shown in the answer. For example accept $7=X^{R} X^{\prime}$ and $X^{R} X^{\beta}$.
(iii) $\quad X^{\mp} X^{\top}$ and $X^{\top} Y$ or $X^{\prime} X^{F}$ and $X^{\top} Y$ or $X^{F} X^{\top}$ and $X^{\prime} Y^{-}$or $X^{\prime} X^{F}$ and $X^{-} Y^{-} /$
or Ff and fY /
or Ff and $\mathrm{f}^{-} /$
or Ff and f - /
or Ff and f;
Accept: a different letter than F. However, lower case and capital letter must correspond to that shown in the answer.
Accept: each alternative either way round.
(c) Correct answer of 32 (\%) = 3 marks;;;

Accept: $0.32=2$ marks
If incorrect answer, allow following points

1. $p^{2} / q^{2}=4 \% / 0.04 /$ or $p / q=0.2$;
2. Shows understanding that $2 \mathrm{pq}=$ heterozygotes / carriers;

Accept: answer provided attempts to calculate 2pq. This can be shown mathematically i.e. 2 x two different numbers.

M5.1. Use 1 in 400 to find frequency of homozygous recessive / q^{2}

OR

1 in 400 gives frequency of 0.0025;
Note - convention has recessive allele as q and dominant allele as p but allow reversal (since outcome is the same) as long as this is consistent throughout
2. Find square root of $q^{2} /$ find square root of 0.0025 ;
3. Use of $p+q=1.0$ / determine frequency of both alleles / both p and $q /$ find p $=0.95$ and $q=0.05$;
4. Use of $2 p q$ to find carriers / heterozygotes;

The question requires a description but credit working where correct as alternative since this shows the stages

